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Abstract

We consider the problem of minimizing the number of misclassifications of
a weighted voting classifier, plus a penalty proportional to the number of
nonzero weights. We first prove that its optimum is at least as hard to ap-
proximate as the minimum disagreement halfspace problem for a wide range
of penalty parameter values. After formulating the problem as a mixed inte-
ger program (MIP), we show that common “soft margin” linear programming
(LP) formulations for constructing weighted voting classsifiers are equivalent
to an LP relaxation of our formulation. We show that this relaxation is
very weak, with a potentially exponential integrality gap. However, we also
show that augmenting the relaxation with certain valid inequalities tightens
it considerably, yielding a linear upper bound on the gap for all values of the
penalty parameter that exceed a reasonable threshold. Unlike earlier tech-
niques proposed for similar problems [4, 14], our approach provides bounds
on the optimal solution value.

Keywords: Weighted voting classification, sparsity, integrality gap,
hardness of approximation.

1. Introduction

This paper examines the relationship between continuous and discrete
formulations of weighted voting classification problems. Consider a binary
classification problem with m training samples, each consisting of ` real-
valued attributes, represented as a matrix A ∈ Rm×` whose rows correspond
to observations and whose columns correspond to attributes. We are also
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given a vector of labels y ∈ {−1, 1}m, defining a partition of the observations
M = {1, . . . ,m} into a “positive” class M+ = {i ∈M | yi = 1} and a “neg-
ative” class M− = M \M+. Using a potentially large set of base classifiers
hj : Ru → {−1, 0, 1} indexed by the set U = {1, . . . , u}, we would like to
train a weighted voting classifier g(x) =

∑
j∈U λjhj(x), for λ ∈ Ru

+. A new

test observation x ∈ RN is classified as either positive or negative based on
sgn(g(x)). Note that λ is constrained to be nonnegative; this restriction is
common in weighted voting classification methods and also simplifies some
of the problem formulations below. By including additional base classifiers of
the form −hj in U as necessary, there is no loss of generality from requiring
λ ≥ 0.

Optimization models for training such classifiers typically have two com-
ponents in their objectives, one related to penalizing misclassified data points
and another related to penalizing classifier complexity, or equivalently max-
imizing a margin of separation; see [6, Theorem 3.1]. To obtain tractable
convex optimization problems, however, commonly used formulations only
use continuous approximations, such as the L1 norm of λ as a surrogate
for the number of nonzero elements in λ. In this paper, we consider the
natural combinatorial formulation which more directly penalizes misclassi-
fication error and classifier complexity; its motivation may be traced back
to error (generalization) bounds for boosting algorithms [8, Theorems 7-8].
Further, there has been significant renewed interest in solving this problem,
and closely related variants, either heuristically or approximately [14, 9].

Hence, we consider the sparse weighted voting classifier (SWVC) problem

min
λ∈Rn+

∑m
i=1 I(yiHiλ < 1) + C ‖λ‖0 , (1)

where C ≥ 0 is a parameter, I(·) is the binary indicator function, ‖·‖0 denotes
the “L0 norm” which counts the number of nonzeroes in its argument, and
Hi is the ith row of H, an m × u matrix whose elements are Hij, the label
assigned to observation i by classifier j.

Unfortunately, special cases of this problem are known to be NP-hard;
we discuss and extend these results in in Section 3. For similar problems,
Weston et al. [14], extending earlier work of Bradley and Mangasarian [4],
propose minimizing a smooth, nonconvex approximation of the step function
in order to heuristically approximate an L0-norm penalty for λ ∈ Ru. Un-
like such techniques, our approach is based on a mixed integer programming
(MIP) formulation, and provides bounds on the optimal value. We will re-
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late it to continuous “soft margin” linear programming (LP) formulations of
classification problems, such as [10]

min
{∑u

j=1 λj +D
∑m

i=1 ξi | diag(y)Hλ+ ξ ≥ 1, and λ, ξ ≥ 0
}
. (2)

Here, the margin of observation i is yiHiλ, and margins smaller than 1 incur
a penalty proportional to the positive parameter D.

2. MIP formulation

We now reformulate (1) as a MIP, using the binary variable µj to indicate
that feature j is used, and the binary variable ξi to indicate that observation
i is misclassified. Letting K be a suitably large constant, 1 denote a vector
of ones, and diag(x) denote a diagonal matrix whose ith diagonal entry is xi,
the formulation is

min
ξ,µ,λ

∑
i∈M ξi + C

∑
j∈U µj (3a)

s.t. diag(y)Hλ+ (mK + 1)ξ ≥ 1 (3b)

λ ≤ Kµ (3c)

ξ ∈ {0, 1}m µ ∈ {0, 1}n λ ≥ 0. (3d)

We now show that (3) is equivalent to (1) for large enough K. The magnitude
of K, however, determines the (poor) quality of the MIP LP relaxation, which
we examine in Section 4. Note that the objective values of (1) and (3) are
both bounded below by 0, and that (3) always has a feasible solution (for
example, λ = 0, ξ = 1). Therefore, the equivalence of SWVC and (3) for
sufficiently large K is established by the following:

Proposition 2.1. If K ≥ mm/2, then every optimal solution (ξ∗, µ∗, λ∗)
of (3) satisfies

m∑
i=1

ξ∗i + C
∑
j∈U

µ∗j = min
λ∈Ru+

m∑
i=1

I(yiHiλ < 1) + C ‖λ‖0

=
m∑
i=1

I(yiHiλ
∗ < 1) + C ‖λ∗‖0 .
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Proof. By (3c), ‖λ∗‖0 ≤
∑

j∈U µ
∗
j . By (3b),

∑m
i=1 I(yiHiλ

∗ < 1) ≤
∑m

i=1 ξ
∗
i .

If λ̂ is optimal for SWVC, then

m∑
i=1

I(yiHiλ̂ < 1) + C‖λ̂‖0 ≤
m∑
i=1

I(yiHiλ
∗ < 1) + C ‖λ∗‖0

≤
m∑
i=1

ξ∗i + C
∑
j∈U

µ∗j . (4)

We now prove the reverse inequality between the first and last quantities.
Consider the linear system in λ given by∑

j∈U :λ̂j 6=0

yiHijλj ≥ 1 ∀ i ∈M : yiHiλ̂ ≥ 1. (5)

Let B denote a basis matrix of this system, comprising a submatrix of
diag(y)H with column indices j ∈ U such that λ̂j 6= 0, and a subset of
columns of −I (corresponding to the slack variables when converting the in-
equalities to equalities). By a standard LP basis argument, there exists a λ̄
solving (5) such that ‖λ̄‖0 ≤ ‖λ̂‖0 ≤ m (with ‖λ̄‖0 = ‖λ̂‖0 when C > 0 by the
optimality of λ̂). Let B(j) denote the matrix B with the column correspond-
ing to feature j replaced by 1; by Cramer’s rule, λ̄j = det

(
B(j)

)
/det(B) for

all j for which λ̄j > 0. Since the rank of B is at most m, Hadamard’s
bound [5, for example] yields

∣∣det
(
B(j)

)∣∣ ≤ mm/2. Since B is a basis,
det(B) 6= 0, and as B is an integer matrix, we have |det(B)| ≥ 1. Hence,
there exists λ′ ∈ Ru with λ′j = λ̄j if λ̂j 6= 0 and λ′j = 0 otherwise, such

that ‖λ′‖0 = ‖λ̂‖0 = ‖λ̄‖ and λ′j ≤ mm/2 ≤ K for all j ∈ U . Further,
|yiHiλ

′| ≤ mm/2+1 for all i ∈M . Let

ξ′i =

{
1 if yiHiλ

′ < 1

0 otherwise,
µ′j =

{
1 if λ′j > 0

0 otherwise.

Then, for all i ∈M , yiHiλ
′+
(
mm/2+1 + 1

)
ξ′i ≥ 1. Thus, (ξ′, µ′, λ′) is feasible

for (3), and
∑m

i=1 ξ
′
i =

∑m
i=1 I(yiHiλ̂ < 1). Therefore, by the optimality of

(ξ∗, µ∗, λ∗) for (3),

m∑
i=1

ξ∗i + C
∑
j∈U

µ∗j ≤
m∑
i=1

ξ′i + C
∑
j∈U

µ′j ≤
m∑
i=1

I(yiHiλ̂ < 1) + C‖λ̂‖0.

Thus, all the relations in (4) hold with equality.

4



The basis arguments of the proof resemble those of Muroga et al. [13],
in particular Lemma 1 and Theorem 16; see also [1]. The results of [13],
well known in the field of Boolean functions and logic gates, state that any
weighted majority gate with n inputs can be realized with integer weights
bounded by 2−n(n+ 1)(n+1)/2. This analysis, however, relies on the assump-
tion that each column of H has only {0, 1} or {0,−1} entries, whereas we
allow mixed {−1, 0, 1} entries in each column. In the case H conforms to the
assumptions of [13], we note that its results can be used to tighten the mm/2

bound above to 2−m+2mm/2; however, this bound remains exponential in m.

3. Computational complexity and inapproximability

When C = 0, minimizing (1) over λ ∈ R is known as the minimum
disagreement halfspace problem (MDH), and is NP-hard [12, 3]. SWVC
generalizes MDH, so it is at least as hard to solve computationally. Specifi-
cally, any MDH instance (H ′, y′) can be reduced to (3) with H =

(
H ′ −H ′

)
,

y = y′ and C = 0. We will also refer to any solution (ξ, µ, λ) of (3), after
applying this reduction to an MDH instance (H, y), as an MDH solution.
Arora et al. [3] showed that MDH is inapproximable to within any factor
better than 2log1−εm, for ε > 0, assuming NP * DTIME(mpoly(logm)), by
reduction of the label cover problem; see also [2] (DTIME(n) is the class of
problems that can be solved in deterministic time n). Dinur and Safra [7]

strengthened the inapproximability of label covering to 2log(1−o(1))m, assuming
P 6= NP . This strengthened inapproximability result also applies to MDH,
through the same reduction as [3], and thus to SWVC with C = 0.

If 0 < C < 1/m and the input data are linearly separable, then SWVC is
equivalent to a special case of another problem that is NP-hard to approxi-
mate, minimizing the number of relevant variables in a linear system [2]. We
omit this proof for brevity, and instead establish a more general inapproxima-
bility result for SWVC for C = O(mδ), where 0 ≤ δ < 1, making use of the
2log1−εm-factor inapproximability for MDH [3, 2] and the work of Dinur and
Safra [7]. Note that SWVC has the trivial solution λ = 0, ξ = 1 whenever
C ≥ m, so only smaller values of C are of interest. For any binary vector of
length at least m, define

S+(ξ) =
{
Hi

∣∣ i ∈M+, ξi = 0
}

and S−(ξ) =
{
Hi

∣∣ i ∈M−, ξi = 0
}
.

We will need the following lemmas:
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Lemma 3.1. Given an MDH instance (H, y) with H ∈ {−1, 0, 1}m×u and
y ∈ {−1, 1}m, along with any C ≥ 0 and some integer k > Cm, there exists a
reduction, polynomial in k and u, to an SWVC instance H ′ ∈ {−1, 0, 1}mk×2u
and y′ ∈ {−1, 1}mk, such that (ξ̂, µ̂, λ̂) is an optimal MDH solution for
(H, y) if and only if the SWVC instance (H ′, y′, C) has an optimal solution

(ξ∗, µ∗, λ∗), where
∑mk

i=1 ξ
∗
i = k

(∑m
i=1 ξ̂i

)
.

Proof. Construct an SWVC instance by having y′ consist of k concatenated
copies of y, and H ′ consist of corresponding duplicate blocks of the form[
H −H

]
. Let (ξ∗, µ∗, λ∗) be an optimal SWVC solution for the input

(H ′, y′, C). Let (ξ̂, µ̂, λ̂) be an optimal MDH solution; its objective value
is zMDH =

∑m
i=1 ξ̂i + 0

∑2u
j=1 µ̂j =

∑m
i=1 ξ̂i. Now, since feasible solutions of

MDH and SWVC always exist and are bounded below by 0, we have only
to prove that zMDH =

∑m
i=1 ξ̂i = (1/k)

∑mk
i=1 ξ

∗
i . First, note that zMDH ≤

(1/k)
∑mk

i=1 ξ
∗
i , since otherwise there exists an MDH solution with objective

below zMDH. To complete the proof, it remains only to rule out the possibil-
ity that zMDH < (1/k)

∑mk
i=1 ξ

∗
i , which we now do by contradiction. Suppose

that zMDH < (1/k)
∑mk

i=1 ξ
∗
i . Then, the integrality of ξ∗ and zMDH yields

zMDH ≤ 1
k

∑mk
i=1 ξ

∗
i − 1. Since (ξ̂, µ̂, λ̂) is a solution of (3), S+(ξ̂) and S−(ξ̂)

are linearly separable. Therefore, since |S+(ξ̂)|+|S−(ξ̂)| ≤ |M+|+|M−| = m,
a standard LP basis argument (see also [13, Lemma 1]) implies that S+(ξ̂)
and S−(ξ̂) are separable by some hyperplane whose weight vector λ ≥ 0
satisfies ‖λ‖0 ≤ m. Then, denoting the SWVC optimal value by zSWVC,

zSWVC =
mk∑
i=1

ξ∗i + C
2u∑
j=1

µ∗j ≤ k
m∑
i=1

ξ̂i + C
2u∑
j=1

I(λj 6= 0) ≤ kzMDH + Cm

< k (zMDH + 1) ≤
mk∑
i=1

ξ∗i ≤ zSWVC.

The first two inequalities on the last line follow respectively from k > Cm
and zMDH ≤ (1/k)

∑mk
i=1 ξ

∗
i − 1. Since the result is a contradiction, we must

have zMDH = (1/k)
∑mk

i=1 ξ
∗
i =

∑m
i=1 ξ̂i.

Lemma 3.2. A polynomial-time f(m)-approximation factor for SWVC with
penalty C = C(m) ∈ O(mδ), for some 0 ≤ δ < 1 and f : N+ → R+, implies a
polynomial-time αf(βm1+(1+δ)/(1−δ))-approximation factor for MDH for some
α, β ∈ O(1).
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Proof. Given any MDH instance (H, y), take (H ′, y′, C) to be the correspond-
ing instance of SWVC, using the reduction of Lemma 3.1, for some integer
k > Cm. Let m′ = km denote the number of observations in this SWVC
instance. Let (ξ∗, µ∗, λ∗) be an optimal SWVC solution for (H ′, y′, C). By a
standard LP basis argument (see also [13, Lemma 1]) it must be possible to
separate linearly separable sets of observations S+(ξ∗) and S−(ξ∗) using at
most m ≥ |S+(ξ∗)|+|S−(ξ∗)| features, and this same separator also separates
the duplicate observations with indices {m+ 1, . . . , km}. Therefore, we may
take (ξ∗, µ∗, λ∗) to be an optimal SWVC solution such that

∑2u
j=1 µ

∗
j ≤ m

(which holds for all optimal solutions whenever C > 0).
Let (ξ̂, µ̂, λ̂) be an optimal MDH solution, with zMDH denoting its ob-

jective value, and let (ξ, µ, λ) denote the hypothesized approximate SWVC
solution. Now, by Lemma 3.1, zMDH =

∑m
i=1 ξ̂i = 1

k

∑km
i=1 ξ

∗
i ; thus,

zMDH ≤
1

k

(
km∑
i=1

ξ∗i + C
2u∑
j=1

µ∗j

)
≤ 1

k

(
km∑
i=1

ξi + C
2u∑
j=1

µj

)

≤ f(km)

k

(
km∑
i=1

ξ∗i + C
2u∑
j=1

µ∗j

)
≤ f(km)

k

(
k

m∑
i=1

ξ∗i + Cm

)

≤ f(km)

(
m∑
i=1

ξ∗i + 1

)
.

The last two inequalities use respectively that
∑2u

j=1 µ
∗
j ≤ m, and k > Cm.

Now, by the hypothesis, C ≤ γmδ, for some constant γ, and so C ≤
γ(km)δ, since k ≥ 1 and δ ≥ 0. For the analysis above to hold, we require k >
Cm; since C ≤ γ(km)δ, this condition will hold if we have k > (γ(km)δ)m.
Solving for k, this condition is equivalent to k > γ1−δm(1+δ)/(1−δ). Specifically,
let us choose k =

⌈
γ1−δm(1+δ)/(1−δ) + ε

⌉
where ε > 0 is a small constant.

Note that there exists some constant β > 0 such that k ≤ βm(1+δ)/(1−δ) for
all m. Now select some (constant) integer τ > 0, and let α = 1 + 1/τ .
If zMDH ≥ τ , then zMDH ≤ f(km)(1 + 1/τ)

∑m
i=1 ξ

∗
i , and by running the

hypothesized approximation algorithm we obtain an approximate

f(km)(1 + 1/τ) ≤ f(βm1+(1+δ)/(1−δ))(1 + 1/τ) = αf(βm1+(1+δ)/(1−δ))

factor solution. On the other hand, if zMDH < τ , then we may obtain an exact
solution in polynomial time by excluding each possible subset of observations
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of size less than τ , and applying a polynomial time LP algorithm to attempt
to construct a separating hyperplane for the remaining observations. Since
the choices of C and k are polynomially bounded in m, and the reduction
of Lemma 3.1 is polynomial in k and u, the entire procedure is polynomial-
time.

Proposition 3.3. For any penalty C ∈ O(mδ) with 0 ≤ δ < 1, and ε > 0, the
SWVC problem cannot be approximated in polynomial time within a factor
of 2log1−εm unless P = NP.

Proof. By Lemma 3.2, a polynomial-time 2log1−εm-factor approximation for
SWVC, for some ε > 0, yields a polynomial-time approximation for MDH
with factor α2log1−ε(βm1+(1+δ)/(1−δ)), for some α, β ∈ O(1). Now,

α2log1−ε(βm1+(1+δ)/(1−δ)) ≤ α2[1+(1+δ)/(1−δ)](1−ε) log1−εm ≤ 2log1−ε
′
m

for some 0 < ε′ ≤ ε, and all m ≥ m0, for some m0 ≥ 1. Unless P = NP , such
an approximation factor contradicts the inapproximability of MDH following
from the reduction of [3, 2] and the strengthened inapproximability result for
label covering in [7].

4. The soft margin relaxation and its integrality gap

Consider the following relaxation of (3):

min
ξ,µ,λ≥0

{∑m
i=1 ξi + C

∑
j∈U µj

∣∣∣∣ diag(y)Hλ+ (mK + 1)ξ ≥ 1

λ ≤ Kµ

}
. (6)

Because it omits the contraints ξ ≤ 1, µ ≤ 1, this linear program is a weaker
relaxation of (3) than the customary linear programming relaxation; we call
it the soft margin relaxation. We now justify this terminology by showing
that (6) is equivalent to the standard soft margin classifier LP (2) when the
penalties C and D are of the appropriate ratio.

Proposition 4.1. For every instance (H, y), (ξ, λ) is an optimal solution
of (2) if and only if (ξ̂, µ̂, λ) is an optimal solution of (6), for ξ̂ = ξ/(mK+1),
µ̂ = λ/K and C = 1/(D(m+ 1/K)).

Proof. Consider the map ω : (λ, ξ,D) 7→
(
λ, 1

mK+1
ξ, 1

K
λ, 1

D(m+1/K)

)
. Take

any D > 0 and (ξ, λ) that is a feasible solution of (2), and let (λ, ξ̂, µ̂, C) =
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ω(λ, ξ,D). Now, diag(y)Hλ+ξ = diag(y)Hλ+(mK+1)ξ̂ ≥ 1 and µ̂ = λ/K
imply that (λ, ξ̂, µ̂) is feasible for (6), with objective value

m∑
i=1

ξ̂ + C

u∑
j=1

µ̂j = 1
mK+1

∑m
i=1 ξi + 1

D(m+1/K)

∑u
j=1 λj/K

= 1
D(mK+1)

(
D
∑m

i=1 ξi +
∑u

j=1 λj

)
.

Thus, ω maps feasible solutions of (2) to feasible solutions of (6), scaling
the objective by C = 1/(D(mK + 1)). Conversely, if one takes any solution
(λ, ξ̂, µ̂) to (6) which has µ̂ = λ/K, then the inverse image of (λ, ξ̂, µ̂, C) under
ω is a singleton {(λ, ξ,D)} such that (λ, ξ) is feasible for (2), with objective
value scaled by by D(mK+1). The conclusion then follows by noting that all
optimal solutions of (6) must have µ = λ/k, since the nonnegative variables
µj have positive objective coefficients, each appears only in the constraint
µj ≥ λj/K, and the objective is being minimized.

The strength of a relaxation is typically characterized by its gap, the ratio
between its optimal objective value and that of the original problem. In the
case of the LP relaxation of a MIP, this ratio is called the integrality gap.
For a given input (H, y), define z(H, y) to be the optimal value of (3), and
zR(H, y) to be the optimal value of (6). We now show that (6) is an extremely
weak relaxation of (3):

Proposition 4.2. supH,y{z(H, y)/zRR(H, y)} ≥ mK + 1.

Proof. Consider the simple SWVC instance given by C = 1 and diag(y)H =
I (the identity matrix), meaning that each base classifier covers only a single
observation. Since each observation i ∈M must be either classified correctly
by the single classifier u with yiHij = 1 and µj = 1, or otherwise ξi = 1,
this instance has an optimal integer solution of value m, where m of the µj
and ξi variables assume a value of one and all of the remaining variables are
zero. The relaxation, however, has the feasible solution ξi = 1/(mK + 1) for
i ∈M , and µ = 0, with value m/(mK + 1). Thus, for this instance, we have
z(H, y)/zR(H, y) ≥ m/(m/(mK + 1)) = mK + 1.

To relate this result to the SWVC problem (1), one must consider the
magnitude of K. The lower bound on K from Proposition 2.1 is sufficient
for (3) to be equivalent to SWVC, but may be much larger than necessary.
We now establish some necessary lower bounds on K.
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Proposition 4.3. If order for (3) to be equivalent to the SWVC problem (1)
for all choices of (H, y, C) with C < q, for some integer q ∈ [0,m], it is
necessary to have K ≥ 2dm/qe−1.

Proof. Construct an SWVC instance (H, y, C) with m observations and u =
dm/qe features so that column j of diag(y)H contains

• 0 in rows 1, . . . , (j − 1)q,
• +1 in rows (j − 1)q + 1, . . . ,min{jq,m},
• −1 in all subsequent rows (if any).

By using all the features, it is possible to correctly classify every observation,
obtaining an objective value of C · u. This is the only optimal choice, since
any solution that uses r < u features must misclassify at least (u − r)q
observations, and hence its objective value is at least (u− r)q+C · r > C · u
(because q > C). Therefore, if (ξ∗, µ∗, λ∗) is optimal for (3), we must have
ξ∗ = 0 and µ∗ = 1. It then follows from (3b) that λ∗1 = 1, λ∗2 = 2, λ∗3 =
4, . . . , λ∗dm/qe = 2dm/qe−1. Thus, formulation (3) must have K ≥ 2dm/qe−1, or
it prohibits the optimal SWVC solution.

As a simple example of the construction in the proof of Proposition 4.3,
setting q = 1 yields an instance (H, y, C) such that

diag(y)H =



+1 0 0 . . . 0 0
−1 +1 0 . . . 0 0
−1 −1 +1 . . . 0 0

. . .

−1 −1 −1 . . . +1 0
−1 −1 −1 . . . −1 +1


,

and C < 1, implying that we need K ≥ 2m−1 for the formulation to be
correct. As a simple corollary of Proposition 4.2 and Proposition 4.3, we
conclude that the soft margin relaxation gap is in general at least exponential
in m/dCe. Finally, for instances with very small C, specifically C < 1/m,
one can use the results of [11, 1] to demonstrate an even larger gap. We omit
these results for brevity.

5. Tightening the relaxation

We now consider adding valid inequalities to (3) in order to strengthen its
relaxation. We say that a base classifier h distinguishes between a pair (i, i′)
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if it classifies them differently but classifies at least one of them correctly, e.g.,
hj(Ai) = yi 6= hj(Ai′). Let Si,i′ = {j ∈ U | hj(Ai) = yi 6= hj(Ai′)} denote
the set of base classifiers that correctly classify observation i and distinguish
it from i′. Consider the following inequality for each pair of observations
(i, i′) ∈ Φ = (M+ ×M−) ∪ (M− ×M+):

ξi + ξi′ +
∑

j∈Si,i′
µj ≥ 1. (7)

The interpretation of this inequality is that either we misclassify at least one
of the of the observations i or i′, or we need to distinguish between the two
using at least one of the distinguishing features in Si,i′ .

Proposition 5.1. The inequalities (7) are valid, that is, they hold for all
integer-feasible solutions of (3).

Proof. Take any (i, i′) ∈ M+ ×M−. If ξi + ξi′ ≥ 1, then (7) clearly holds.
Otherwise, i ∈ M+ and ξi = ξi′ = 0 imply that

∑
j∈U Hijλj ≥ 1. Thus,

hj(Ai)λj > 0 for some j ∈ U ; λj ≥ 0 and hj(Ai) = yi = 1 imply 0 < λj/K ≤
µj = 1. The proof for (i, i′) ∈M− ×M+ is similar.

We now consider the tightened relaxation consisting of the linear pro-
gram (6), augmented by all possible cutting planes of the form (7). We
denote the optimal objective value of the tightened relaxation by zTR(H, y).

In typical learning applications of SWVC, each feature added to the model
should explain at least a single additional observation, implying that C ≥ 1.
In this case, it is straightforward to prove a bound on the gap of the tightened
relaxation:

Proposition 5.2. If C ≥ 1, then z(H, y)/zTR(H, y) ≤ m.

Proof. Consider an optimal solution (ξ, µ, λ) of the tightened relaxation.
Now, if C ≥ 1, the cuts (7) assure that zTR(H, y) =

∑m
i=1 ξi + C

∑
j∈U µj ≥

ξi+ξ
′
i+
∑

j∈Sii′
µj ≥ 1, for some (i, i′). On the other hand, ξ = 1, µ = 0, λ = 0

is feasible for (3) and attains the objective value m, so z(H, y) ≤ m.

Thus, the cuts (7) provably tighten the soft margin relaxation (6), equiv-
alent to the standard soft-margin linear program (2), reducing its gap from
exponential to a small polynomial in the input.

We now make some remarks about the practical application of the tight-
ened relaxation: first, note that since the number of cuts (7) is at most
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2|M+||M−|, the polynomial-time solvability of LP implies that the solution
of the tightened relaxation may be found in time polynomial in the input.
Although the total number of cutting planes is in O(m2), significant practi-
cal improvements are possible by using only a carefully selected subset, for
example by iteratively identifying violated inequalities (7), adding them to
the formulation, and reoptimizing. Finally, in [9], we suggested a variant of
the tightened relaxation formulation, preferable for numerical reasons, which
dispenses with the large constant K and constrains ‖λ‖1 = 1, while fixing
the margin equal to a small parameter. We used this formulation to evaluate
the practical effectiveness of inequalities of the form (7) within a cut and
column generation boosting algorithm.

6. Conclusion

Generalization error bounds of weighted voting classifier techniques can
be expressed in terms of the training data errors and number of nonzero
entries of the weight vector; see [8] and references therein. Our results here
extend previous computational complexity results that only addressed the
problems of minimizing each quantity independently of the other. Our ex-
tension shows that minimizing the number of misclassifications plus a penalty
proportional to the number of nonzeros is equally hard for a large range of
penalty parameter values; this result is significant because the problem pos-
sesses a trivial solution for a sufficiently large penalty. We related an LP
relaxation of our problem to previous algorithmic work, and proved an ex-
ponential lower bound on its integrality gap. On the other hand, we were
able to prove a linear upper bound on the gap when the formulation is aug-
mented by a polynomial number of novel inequalities. We believe that these
results have practical significance for the design of sparse weighted voting
classifier algorithms: in [9], we implemented a similar approach to a closely
related formulation, with empirical results showing competitive classification
performance while maintaining weight vector sparsity. This technique was
less sensitive to parameter settings than prior methods omitting inequalities
of the form (7).
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